Page last updated: 2024-12-08

10H-[1]benzothiolo[3,2-b]indole

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

10H-[1]benzothiolo[3,2-b]indole, also known as **benzothiopyranoindole**, is a heterocyclic compound with a fused ring system containing both benzene, thiophene, and indole moieties.

**Importance in Research:**

This compound and its derivatives have garnered significant interest in research due to their potential for diverse biological activities and therapeutic applications. Here's why:

* **Anti-cancer activity:** Studies have shown that benzothiopyranoindole derivatives exhibit promising anti-cancer activity against various cancer cell lines, including leukemia, breast cancer, and lung cancer. Their mechanism of action often involves inhibiting cell proliferation, inducing apoptosis, and affecting signaling pathways crucial for tumor growth.
* **Anti-inflammatory activity:** Some derivatives possess anti-inflammatory properties, potentially targeting inflammatory pathways like NF-κB. This makes them promising candidates for treating inflammatory diseases like arthritis and inflammatory bowel disease.
* **Antibacterial and antifungal activity:** Certain benzothiopyranoindoles display antibacterial and antifungal activities, potentially making them useful in developing new antimicrobial agents to combat resistant strains.
* **Neuroprotective activity:** Research indicates that some derivatives might possess neuroprotective effects, protecting against neuronal damage in conditions like Alzheimer's disease and Parkinson's disease.
* **Other potential applications:**
* **Anti-viral activity:** Studies are ongoing to evaluate their potential against viral infections.
* **Anti-parasitic activity:** Their effectiveness against parasitic infections is being explored.
* **Photodynamic therapy:** Some derivatives exhibit phototoxicity, making them promising candidates for photodynamic therapy, a non-invasive treatment method for cancer.

**Research Focus:**

Current research efforts primarily focus on:

* **Synthesis and structure-activity relationship (SAR) studies:** Researchers are exploring various synthetic methods to create new benzothiopyranoindole derivatives and investigating the relationship between their chemical structure and biological activity.
* **Mechanism of action studies:** Investigating the precise mechanisms by which these compounds exert their biological effects is crucial for understanding their potential as therapeutic agents.
* **Pharmacokinetic and toxicity studies:** Determining their pharmacokinetic properties (absorption, distribution, metabolism, and excretion) and potential toxicity profiles is vital for developing safe and effective drugs.

**Overall:** 10H-[1]benzothiolo[3,2-b]indole and its derivatives represent a promising class of compounds with diverse biological activities. Further research is ongoing to fully understand their potential for treating a wide range of diseases.

Cross-References

ID SourceID
PubMed CID354261
CHEMBL ID1490022
CHEBI ID105992
SCHEMBL ID8654364

Synonyms (18)

Synonym
nsc605333
nsc-605333
mls000757221 ,
10h-benzothiopheno[3,2-b]indole
10h-[1]benzothieno[3,2-b]indole
NCI60_004632
smr000529048
CHEBI:105992
10h-[1]benzothiolo[3,2-b]indole
HMS2884F09
CHEMBL1490022
FPQLXWGSGNEDCF-UHFFFAOYSA-N
SCHEMBL8654364
Q27183787
benzothieno[3,2-b]indole
DTXSID201304576
248-67-9
10h-benzo[4,5]thieno[3,2-b]indole
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
indolesAny compound containing an indole skeleton.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (14)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Beta-lactamaseEscherichia coli K-12Potency89.12510.044717.8581100.0000AID485294
LuciferasePhotinus pyralis (common eastern firefly)Potency13.45910.007215.758889.3584AID588342
Nrf2Homo sapiens (human)Potency12.58930.09208.222223.1093AID624171
glp-1 receptor, partialHomo sapiens (human)Potency28.18380.01846.806014.1254AID624417
chaperonin-containing TCP-1 beta subunit homologHomo sapiens (human)Potency89.12513.981127.764939.8107AID504842
ATAD5 protein, partialHomo sapiens (human)Potency20.58780.004110.890331.5287AID504467
TDP1 proteinHomo sapiens (human)Potency18.35640.000811.382244.6684AID686978
Microtubule-associated protein tauHomo sapiens (human)Potency6.20500.180013.557439.8107AID1460; AID1468
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
parathyroid hormone/parathyroid hormone-related peptide receptor precursorHomo sapiens (human)Potency50.11873.548119.542744.6684AID743266
ras-related protein Rab-9AHomo sapiens (human)Potency3.16230.00022.621531.4954AID485297
DNA polymerase iota isoform a (long)Homo sapiens (human)Potency79.43280.050127.073689.1251AID588590
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency39.81070.00419.962528.1838AID2675
TAR DNA-binding protein 43Homo sapiens (human)Potency1.77831.778316.208135.4813AID652104
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (18)

Processvia Protein(s)Taxonomy
negative regulation of protein phosphorylationTAR DNA-binding protein 43Homo sapiens (human)
mRNA processingTAR DNA-binding protein 43Homo sapiens (human)
RNA splicingTAR DNA-binding protein 43Homo sapiens (human)
negative regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
regulation of protein stabilityTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of insulin secretionTAR DNA-binding protein 43Homo sapiens (human)
response to endoplasmic reticulum stressTAR DNA-binding protein 43Homo sapiens (human)
positive regulation of protein import into nucleusTAR DNA-binding protein 43Homo sapiens (human)
regulation of circadian rhythmTAR DNA-binding protein 43Homo sapiens (human)
regulation of apoptotic processTAR DNA-binding protein 43Homo sapiens (human)
negative regulation by host of viral transcriptionTAR DNA-binding protein 43Homo sapiens (human)
rhythmic processTAR DNA-binding protein 43Homo sapiens (human)
regulation of cell cycleTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA destabilizationTAR DNA-binding protein 43Homo sapiens (human)
3'-UTR-mediated mRNA stabilizationTAR DNA-binding protein 43Homo sapiens (human)
nuclear inner membrane organizationTAR DNA-binding protein 43Homo sapiens (human)
amyloid fibril formationTAR DNA-binding protein 43Homo sapiens (human)
regulation of gene expressionTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
RNA polymerase II cis-regulatory region sequence-specific DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
double-stranded DNA bindingTAR DNA-binding protein 43Homo sapiens (human)
RNA bindingTAR DNA-binding protein 43Homo sapiens (human)
mRNA 3'-UTR bindingTAR DNA-binding protein 43Homo sapiens (human)
protein bindingTAR DNA-binding protein 43Homo sapiens (human)
lipid bindingTAR DNA-binding protein 43Homo sapiens (human)
identical protein bindingTAR DNA-binding protein 43Homo sapiens (human)
pre-mRNA intronic bindingTAR DNA-binding protein 43Homo sapiens (human)
molecular condensate scaffold activityTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (9)

Processvia Protein(s)Taxonomy
intracellular non-membrane-bounded organelleTAR DNA-binding protein 43Homo sapiens (human)
nucleusTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
perichromatin fibrilsTAR DNA-binding protein 43Homo sapiens (human)
mitochondrionTAR DNA-binding protein 43Homo sapiens (human)
cytoplasmic stress granuleTAR DNA-binding protein 43Homo sapiens (human)
nuclear speckTAR DNA-binding protein 43Homo sapiens (human)
interchromatin granuleTAR DNA-binding protein 43Homo sapiens (human)
nucleoplasmTAR DNA-binding protein 43Homo sapiens (human)
chromatinTAR DNA-binding protein 43Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (12)

Assay IDTitleYearJournalArticle
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]